

FACULTY OF ENGINEERING & TECHNOLOGY

Effective from Academic Batch: 2022-23

Programme: BACHELOR OF TECHNOLOGY (Electronics and Communication)

Semester: V

Course Code: 202060506

Course Title: Industrial Electronics and Automation

Course Group: Professional Elective Course

Course Objectives: This course provides vital knowledge of the various aspects of industrial automation. Further this enables students to understand the basic concepts of power electronics components and converters used in Industry for automation. Also, this course gives an insight of PLC, and DCS for industrial automation.

Teaching & Examination Scheme:

Contact hours per week			Course	Examination Marks (Maximum / Passii			sing)	
Loctura	Tutorial	Practical	Credits	Theory		J/V/P*		Total
Lecture	Tutoriai			Internal	External	Internal	External	Total
3	0	2	4	50/18	50/17	25/9	25/9	150/53

^{*} **J**: Jury; **V**: Viva; **P**: Practical

Detailed Syllabus:

Sr.	Contents	Hours					
1	Introduction to Industrial Automation: Introduction to Industrial Automation, 08						
	Role of automation in industries, types of manufacturing industries, type of						
	automation system, Benefits of automation. Automation pyramid, automation						
	tools like PAC, PLC, SCADA, DCS, Hybrid DCS with reference to automation						
	pyramid.						
2	Power Electronics Devices and Converters: Ideal characteristics of	10					
	Semiconductor switches, Power semiconducting devices: Construction,						
	operation and characteristics of SCR, LASCR, DIAC, TRIAC, IGBT, GTO, UJT, MCT.						
	Comparison of widely used power switches (BJT, MOSFET and IGBT), 4-20 mA						
	current loop, controlled rectifiers – single phase half-wave and Full-wave						
	rectifiers with resistive and inductive loads; Step-Up and Step-down choppers;						
	Single-phase voltage source Half and Full bridge Inverters; Single phase to single						
	phase Cycloconverters, BLDC Drives.						

3	Industrial Standard Protocols: Definition of protocol, Introduction to Open System Interconnection (OSI) model, Communication standard (RS232, RS485),	07		
	Modbus (ASCII/RTU), Introduction to third party interface, concept of OPC (Object linking and embedding for Process Control), HART Protocol:			
	Introduction, frame structure, programming, implementation examples, benefits, advantages and limitation. Foundation Fieldbus H1: Introduction, frame			
	structure, programming, implementation			
4	examples, benefits, advantages and limitations. Comparison of HART, Foundation Fieldbus, Device net, Profibus, Controlnet, Industrial Ethernet.	07		
5	Programmable Logic Controller: Programmable Controllers, Programmable logic controllers (PLCs), PLC Programming, Ladder Diagram, PLC Communication and Networking, PLC Selection, PLC Installation, Advantages and applications of PLCs for Industrial Automation.	07		
6	Distributed Control System: Overview of DCS, DCS software configuration, DCS communication, DCS Supervisory Computer Tasks, DCS integration with PLC and Computers, Features of DCS, Advantages of DCS.	06		
		45		

List of Practicals / Tutorials:

	1
1	To study and plot characteristics of SCR/IGBT/MOSFET.
2	Study of UJT as a relaxation oscillator and trigger circuit for turning on SCR.
3	AC Phase firing controls using DIAC and TRIAC.
4	To study and observe the waveform of single-phase half and full wave-controlled rectifiers
	using resistive and reactive load.
5	To study step up and step-down choppers with various duty cycles.
6	To study full bridge inverters using resistive load.
7	To study various industrial protocols.
8	Logic implementation for any one industrial application.
9	Tune PID controller for heat exchanger using DCS.
10	Industrial visit report

Reference Books:

1	M.D. Singh, K. B. Khanchandani, Power Electronics , 2 nd Edition, McGraw Hill Education
2	Muhammad H. Rashid, Power Electronics: Devices Circuits and Applications , 4th Edition,
	Pearson Education
3	S. K. Singh, Industrial Instrumentation and Control , 3 rd Edition, McGraw Hill Education
4	C. D. Johnson, Process Control Instrumentation Technology , 8 th Edition, Pearson Education
	India
5	Garry Dunning, Introduction to Programmable Logic Controllers, 3rd Edition, Cengage
	Learning India
6	W Bolton, Programmable Logic Controllers , 4 th Edition, Elsevier.

Supplementary learning Material:						
1	NPTEL and Coursera Video Lectures					

2 MATLAB, PLC Software, LabView

Pedagogy:

- Direct classroom teaching
- Audio Visual presentations/demonstrations
- Assignments/Quiz
- Continuous assessment
- Interactive methods
- Seminar/Poster Presentation
- Industrial/ Field visits
- Course Projects

Internal Evaluation:

The internal evaluation comprised of written exam (40% weightage) along with combination of various components such as Certification courses, Assignments, Mini Project, Simulation, Model making, Case study, Group activity, Seminar, Poster Presentation, Unit test, Quiz, Class Participation, Attendance, Achievements etc. where individual component weightage should not exceed 20%.

Suggested Specification table with Marks (Theory) (Revised Bloom's Taxonomy):

Distribution of Theory Marks in %				larks i	n %	R: Remembering; U: Understanding; A: Applying;
R	U	A	N	E	С	N: Analyzing; E: Evaluating; C: Creating
15	20	20	15	20	10	

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Course Outcomes (CO):

Sr.	Course Outcome Statements	%weightage		
CO-1	Understand Industrial Automation, its types, automation pyramid and			
	industrial standard protocols.	30		
CO-2	Understand, design and development of various power electronics			
	converters like rectifiers, choppers, inverters and cycloconverters.	30		
CO-3	Learn the concept of Programmable Logic Controllers.	20		
CO-4	Know the concept of a distributed control system.	20		

Curriculum Revision:					
Version:	2.0				
Drafted on (Month-Year):	June -2022				
Last Reviewed on (Month-Year):	-				
Next Review on (Month-Year):	June-2025				